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Abstract— Modern work environments have extensive
interactions with technology and greater cognitive com-
plexity of the tasks, which results in human operators
experiencing increased mental workload. Air traffic control
operators routinely work in such complex environments,
and we designed tracking and collision prediction tasks to
emulate their elementary tasks. The physiological response
to the workload variations in these tasks was elucidated
to untangle the impact of workload variations experienced
by operators. Electroencephalogram (EEG), eye activity,
and heart rate variability (HRV) data were recorded from
24 participants performing tracking and collision prediction
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tasks with three levels of difficulty. Our findings indicate that
variations in task load in both these tasks are sensitively
reflected in EEG, eye activity and HRV data. Multiple regres-
sion results also show that operators’ performance in both
tasks can be predicted using the corresponding EEG, eye
activity and HRV data. The results also demonstrate that the
brain dynamics during each of these tasks can be estimated
from the corresponding eye activity, HRV and performance
data. Furthermore, the markedly distinct neurometrics of
workload variations in the tracking and collision prediction
tasks indicate that neurometrics can provide insights on the
type of mental workload.These findings have applicabilityto
the design of future mental workload adaptive systems that
integrate neurometrics in deciding not just “when” but also
“what” to adapt. Our study provides compelling evidence
in the viability of developing intelligent closed-loop mental
workloadadaptive systems that ensure efficiency and safety
in complex work environments.

Index Terms— Mental workload, EEG, pupil size, blink
rate, RMSSD.

I. INTRODUCTION

MENTAL workload is one of the most crucial factors
that affect the efficiency of human operators as they

function in complex interactive work environments. Wickens
and Tsang [1] defined mental workload as the dynamic rela-
tionship between the cognitive resources demanded by a task
and the capability of the operator to afford those resources.

The theory of limited cognitive resources states that expo-
sure to demanding task conditions impairs performance due to
resource depletion [2] or compromised access to resources [3].
As mental workload has a negative influence on the perfor-
mance of the operator, it results in human error commis-
sion [4], compromising system efficiency and safety [5]. Men-
tal workload must be maintained at an optimal level, avoiding
both underload and overload [6] as the performance is known
to fall at both overload and underload conditions [6], [7].

Predicting an operator’s mental workload and thereby
adapting the system behaviour by modifying task alloca-
tion can avoid the loss of situational awareness, maintaining
high performance. Accurate and reliable measurement of the
mental workload of an operator is crucial, especially in a
safety-critical work environment, by providing better work
environments and human-machine interactions [8], [9].

Researchers have relied on multiple strategies, such as self-
assessment, performance measures and physiological metrics,
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to assess mental workload; however, each of these methods has
its benefits and drawbacks [10]. Over the years, physiological
metrics have been used to assess workload [11], [12] as it
offers high sensitivity, diagnostic ability and is mostly non-
intrusive [13], providing an accurate and real-time assessment
of the operator’s workload. The use of physiological data
such as neurophysiological signals can assess mental workload
online without influencing the task as there is no explicit
output [14], [15]. Neurophysiological measures can also assess
the changes in the mental state that are not merely discernible
in overt task performance [1], [15], [16].

Neurophysiological measures, such as the electroencephalo-
gram (EEG) signal, has been widely employed to estimate
mental workload as the effects of task demand are clearly
visible in EEG rhythm variations [14], [17]–[19]. Researchers
have also used EEG to predict performance degradation from
workload variations reliably [21], [22] and noted that it is
correlated with an increase in the frontal theta power and
a change in parietal alpha power, which relates to cog-
nitive and memory performance [14], [21]– [23]. However,
EEG features of the mental workload are found to be task-
dependent, therefore, adding other modalities like eye activ-
ity data and heart rate data can help achieve far superior
outcomes [24].

This paper investigated whether the multimodal physiologi-
cal metrics of mental workload can provide more information
about the task contributing to the workload. We designed
tracking and collision prediction tasks to elucidate the phys-
iological effects of workload variations in these tasks. The
tasks were inspired by the real-world tasks that air traffic
control (ATC) operators routinely perform to ensure a safe and
efficient air traffic flow. Even though several factors influence
the complexity of ATC tasks [25], [26], such as environmental,
display, traffic and organisational aspects, the main functions
of ATC operators are tracking and collision prediction.

The tracking task was designed based on a widely employed
and extensively researched paradigm of multiple object track-
ing [27], [28]. This tracking task was chosen as it emulates
the real-world ATC job of keeping track of aircraft, and the
design of the collision prediction task was inspired by the
conflict detection task of ATC.

The experiment was fashioned as a classical cognitive
paradigm with manipulation of workload (low, medium, high)
and repeated stimuli to study whether physiological data
such as EEG, eye activity and HRV can reliably assess
the mental workload of the operator while they perform
these basic tracking and collision prediction tasks. We for-
mulated the following four research hypotheses for our
study:

H1 The three distinct levels of workload defined in both
tracking and collision prediction tasks can yield signif-
icant performance degradation with the increasing levels
of workload.

H2 Workload variation in tracking and collision prediction
tasks can be reliably assessed using EEG, eye activity
and HRV metrics.

Fig. 1. The experimental design of the tasks. (A) the experimental
design of the tracking task and (B) shows the design of the collision
prediction task. The number of dots shown in these diagrams is just for
representation purposes.

H3 The performance in tracking and collision prediction
tasks can be predicted based on the measured physio-
logical signals.

H4 Physiological response to the workload variations in the
tracking and collision prediction tasks will be distinct
across tasks.

II. MATERIALS AND METHODS

A. Participants

Twenty-four participants (age 25 ± 5, 17 males and seven
females, all right-handed), recruited at the University of Tech-
nology Sydney, participated in this experiment after giving
written informed consent. Participants did not have prior
knowledge of the experimental scenario. All the participants
had normal or corrected vision and no history of any psy-
chological disorder that might affect the results. The experi-
mental protocol was approved by the University of Technology
Sydney Human Research Ethics Expedited Review Committee
(ETH19-4197).

EEG data was collected using the SynAmps2 Express
system (Compumedics Ltd., VIC, Australia) with 64 Ag/AgCl
sensors. Eye activity data was collected using Pupil Labs
(Pupil Core, Berlin, Germany). This wearable eye-tracking
headset has three cameras, two of which record the eyes
activity at a 200 Hz sampling rate, and the other one records
the participant’s field of view at a 30 Hz sampling rate [29].
The Blood Volume Pulse (BVP) data was recorded using
infrared plethysmography-based Empatica E4 (Empatica Srl,
Milano, Italy). The real-time synchronisation of events from
the task scenario to the EEG, eye activity and BVP data was
achieved by the Lab Streaming Layer [30].

B. Experimental Procedure

Our experimental design included two tasks – multiple
objects tracking task [31] and collision prediction task.
As shown in Fig. 1(A), in the tracking task, during the initial
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TABLE I
WORKLOAD MANIPULATIONS IN THE TRACKING AND

COLLISION PREDICTION TASKS

3 seconds, participants look at a fixation cross on the screen
followed by a freeze phase, where the dots, some of which
are blue, and the rest are red, remain stationary. The blue
dots are the dots that should be tracked (hence, ‘targets’).
After three seconds of freeze, the blue targets also turn red
so that they are no longer distinctive from the other dots and
all the dots start moving. Each dot has a diameter of 14 pixels,
and they move randomly in the display area at a frame rate
of 15 frames/second. The participant is asked to keep track
of the targets (initially blue dots) for 15 seconds. After this
time window, all dots stop moving, and the participants should
indicate the target dots by clicking on the dots that they have
kept track of. The workload levels in this tracking task are
manipulated by varying the number of blue dots and the total
number of dots, as shown in Table I.

As shown in Fig. 1(B), in the collision prediction task, there
is a fixation cross on the screen for three seconds. Then there
is a three-second-long freeze phase where the dots remain sta-
tionary, after which all the dots start moving. All dots are of the
same colour (pink), unlike the tracking task. The participant
is required to predict the trajectory of the dots and identify
which pair of dots would collide. Dots move in a predefined
uniform direction at a frame rate of 15 frames/second, and
we have manipulated the trajectory of the dots such that there
will be only one collision in each trial. The participants were
asked to identify the pair of dots that would collide and click
on both dots before the collision, which usually occurs in
the last 3 seconds of the trial. In order to prevent random
guesses, the number of dots the participants can select is
limited to two, and once the participant clicks on the dot,
it changes from pink to red colour. The levels of workload
were manipulated by varying the number of dots as shown in
Table I. A 15-inch monitor with 1920 x 1080 resolution was
used to display both these tasks. We carried out the experiment
in a light-controlled room, which provided a good balance of
luminance in the experimental environment and the display
screen, avoiding any direct or reflected glare. Furthermore,
the tracking and collision prediction tasks were designed with
a black background to avoid any eye fatigue effects.

Each participant had to perform 108 trials of each task with
36 trials of each workload level. The entire experiment was
divided into four blocks, and each block had 27 trials of the
tracking task and 27 trials of the collision prediction task. The
type of workload condition in the trials was randomised within
a block to avoid habituation or expectation effects.

After each block, the participants were advised to rest for
five minutes before proceeding to the next block by pressing
the spacebar key. Also, within a block, after completing each
trial, participants move to the subsequent trial by pressing
the spacebar key. The participants were advised to self-pace
and rest before proceeding to the next trial to avoid fatigue.
Furthermore, to avoid measuring any fatigue effects, the EEG,
eye activity and HRV data from each trial were normalised by
considering the fixation period at the beginning of every trial
as the baseline.

All participants were trained in a training session that lasted
approximately ten minutes, where they performed six trials of
each task to familiarise themselves with the tasks and develop
strategies for successfully executing the tasks. The participants
were asked to continue the training until they felt comfortable
with the tasks. After the training, all participants performed
the tasks for 1̃.5 hours, during which EEG, eye activity and
HRV data were collected.

C. Data Analysis

1) Behavioural and Performance Data Analysis: For the
tracking task, performance was evaluated by examining track-
ing accuracy. The tracking accuracy for each trial was defined
as the ratio of the number of correctly tracked dots to the total
number of dots to track.

Tracking Accuracy = Number of Correctly Tracked Dots

Total Number of Dots to Track
(1)

The performance in the collision prediction trials was
determined using the time before collision and collision miss
proportion rate. The time before collision is the time period
between when the participant clicks on either one of the
colliding dots and when the collision happens. The collision
miss proportion rate for a particular workload level of the
collision prediction task is the ratio of the number of collision
prediction misses to the total number of collisions in that
specific workload level. A collision miss was considered to
happen when the participant could not identify which pair of
dots would collide and, hence, did not click on either of the
dots before the collision.

Collision Prediction Miss Proportion Rate

= Number of Missed Collision Predictions

Total Number of Collisions
(2)

2) EEG Preprocessing: EEG data were preprocessed using
EEGLAB v2020.0 toolbox [32] in MATLAB R2019a (The
Mathworks, Inc., Natick, MA, USA) and adapted from [33].
EEG data were down-sampled to 250 Hz, and a band-pass
filter of 2–45 Hz was applied. Channels with three sec-
onds or more flat line were removed using the clean_flatline
function. Noisy channels were identified and removed using
the clean_channels function in EEGLAB. On average, 3±1
channels were removed, and these channels were restored by
interpolating the data from neighbouring channels using the
spherical spline method from the EEGLAB toolbox. Contin-
uous artifactual regions were removed using the EEGLAB
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function, pop_rejcont. Then window cleaning was performed
using the clean_windows function in EEGLAB.

After these artifact removal steps, two EEG datasets were
extracted, one comprising tracking trials and one with the
collision prediction trials. Each participant had 30±2 high,
31±1 medium and 29±1 low workload tracking trials, and
32±2 high, 32±2 medium and 30±1 low workload collision
prediction trials.

The tracking epochs were 21 seconds long and included the
three seconds of fixation period followed by the three seconds
of freeze, after which the tracking task was commenced. The
collision prediction task epochs were 15 seconds in length and
included the initial three seconds of fixation period followed
by the three seconds of freeze and then the collision prediction
task. Both tracking and collision prediction datasets were
decomposed using Independent Component Analysis (ICA),
performed using EEGLAB’s runica algorithm [32]. Finally,
we employed ICLabel [34], an automatic IC classifier to
identify components related to brain, heart, line noise, eye,
muscle, channel noise and other activities. This tool was
adopted to generate class labels for each component, and all
the components with labels other than brain activity were
rejected.

a) IC Clustering: EEGLAB STUDY structure [35] was
used to manage and process data recorded from multiple
participants as it provides component clustering to cluster
similar independent components across participants and allows
statistical comparisons of component activities for different
workload conditions. Clustering functions were used to exam-
ine the contributions of frontal, parietal and occipital clusters
of independent components (ICs) to the workload dynamics.
Frontal and parietal brain regions have been reported to reflect
the changes in workload [11], [17], [19], [36]–[38], and as both
our tasks also manipulate the visual load, we mainly focused
on the frontal, parietal and occipital clusters of brain activity.

A Study was created for each task, and each Study had
one group (with 24 participants) with three conditions corre-
sponding to the three levels of workload. Since the dataset of
each participant was recorded in a single session, the resulting
independent component maps were the same across all three
conditions for each participant. For each participant, only those
ICs that had a residual variance (RV) less than 15% and inside
the brain volume were chosen, which was achieved using
Fieldtrip extension [39]. The k-means clustering algorithm
[40] was used to cluster independent components across
all participants to clusters based on two equally weighted
(weight=1) criteria: (1) scalp maps and (2) their equivalent
dipole model locations, which was performed using DIPFIT
routines [41] in EEGLAB. Talairach coordinates [42] of the
fitted dipole sources of these clusters were identified to select
frontal, parietal and occipital clusters.

The grand-mean IC event-related spectral power
changes (ERSPs) for each condition was subsequently
calculated for each cluster. Fixation phase in each tracking
and collision prediction epoch was taken as the baseline to
see the changes in power spectra during the task. ERSPs
for frontal, parietal and occipital clusters for tracking and
collision prediction tasks were examined. To compare the

ERSP of different workload conditions, permutation-based
statistics, implemented in EEGLAB, was used with Bonferroni
correction and significance level set to p = .05.

Also, for the frontal, parietal and occipital clusters, each
ICs’ spectral powers were calculated using EEGLAB’s spec-
topo function, which uses Welch’s periodogram method [43]
on each 2-s segment using a Hamming window with 25%
overlap for a range of frequencies from 2 to 45 Hz. For each
IC, the power spectral density (PSD) at different frequency
bands were examined to identify the correlates of mental
workload, and the results are available in the Supplementary
Material.

3) Eye Activity Data: Pupil Core software, Pupil Capture,
provides the pupil size for the left and right eye separately
along with the associated confidence value, representing the
quality of the detection result. All data points where the
confidence of the pupil size was less than 0.8 were removed
from the data. The pupil size data was low pass filtered (using
a minimum order finite impulse response filter) at 4 Hz [44].
The raw pupil size data was normalised using the baseline data
(defined as the three seconds of fixation period in each tracking
and collision prediction epoch). The blinks during each trial
was also extracted from the pupil size measurement when the
pupil size and confidence of the measurement, reported by the
Pupil Capture software, suddenly dropped to zero.

4) Heart Rate Variability: Inter-beat-interval (IBI) time series
was computed from the Blood Volume Pulse (BVP) data of
each tracking and collision prediction trial. Root Mean Square
of the Successive Differences (RMSSD) was computed by
detecting peaks of the BVP using PeakUtils Python package
[45] and calculating the lengths of the intervals between
adjacent beats.

RM SSD =
√√√√ 1

N

N∑
i=1

(I B Ii−1 − I B Ii )2 (3)

RMSSD data was also normalised by considering the fixa-
tion period in each tracking and collision prediction epoch as
the baseline.

5) Statistical Analysis: Statistical analyses were carried out
using the SPSS (IBM SPSS 26.0; Chicago, IL, U.S.A.)
statistical tool. In order to investigate the differences in
the performance, EEG, eye activity and HRV parameters
across participants in the three workload levels of tracking
and collision prediction tasks, repeated-measures analysis of
variance (ANOVA) was conducted with workload level (low,
medium or high) as the within-subjects factor. Mauchly’s
test was implemented to test for sphericity. We performed
Greenhouse-Geisser correction if sphericity was not satisfied
(p < .05). If the main effect of the ANOVA was significant,
post-hoc comparisons were made to determine the significance
of pairwise comparisons, using Bonferroni correction.

Principal Component Factor Analysis procedure was carried
out to select factors and derive EEG and eye metrics for
tracking and collision prediction tasks. Kaiser-Meyer-Olkin
(KMO) test and Bartlett’s test was carried out to ensure
the suitability of the data for factor analysis. The varimax
method was used for factor rotation. Only the factors satisfying
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Fig. 2. (A) shows the tracking accuracy of all the participants in the tracking task for the three levels of workload. (B) and (C) shows the performance
of all participants in the collision prediction task for the three levels of workload. (B) shows the mean time before collision for all the participants in
the low, medium, and high workload conditions. (C) shows the collision prediction miss proportion rate for the three levels of workload.

Kaiser–Guttman criterion were included in determining EEG
and eye metrics in both tasks.

Finally, multiple linear regression was performed to relate
EEG, eye activity and HRV metrics to the performance in
the tracking and collision prediction tasks. EEG power, eye
activity and HRV metrics were all entered as predictors
using the enter method, and the performance in the task was
the dependent variable. Multiple linear regression was also
performed to relate task performance, eye activity and HRV
metrics to the observed brain dynamics during the tracking
and collision prediction tasks. Performance, eye activity and
HRV metrics were all entered as predictors using the enter
method, and the brain dynamics in the task was the dependent
variable.

III. RESULTS

A. Behavioural and Performance Measures

In the tracking task, tracking accuracy decreased signif-
icantly with increasing levels of workload, as shown in
Fig. 2(A). A repeated-measures ANOVA showed that tracking
accuracy differed significantly between workload conditions
[F(2, 48) = 239.910, p < .001, η2

p = .899].
For the collision prediction task, the time before collision

and collision prediction miss proportion rate was considered.
The time before collision decreased with increasing workload,
as shown in Fig. 2(B). A repeated-measures ANOVA was
conducted to study the effect of workload variations on time
before collision, and the results showed that time before
collision varied significantly between workload conditions
[F(1.497, 40.406) = 132.688, p < .001, η2

p = .831]. The colli-
sion prediction miss proportion rate increased with increasing
levels of workload, as shown in Fig. 2(C). Repeated-measures
ANOVA showed that the collision prediction miss proportion
varied significantly between workload conditions [F(1.593,
43.009) = 116.338, p < .001, η2

p = .812].

B. EEG Results

1) Independent Source Clusters: The frontal, parietal and
occipital clusters were selected based on the location of fitted
dipole sources [41]. For the tracking task (refer Fig. 3(A1)),

the Talairach coordinate of the frontal, parietal and occipital
clusters centroid were at (−1, 41, 27), (4, −51, 39) and (30,
−70, 15) respectively (refer Fig. 3(B1)).

For the collision prediction task (see Fig. 4(A1), 4(B1)
and 4(C1)), the Talairach coordinate of the frontal, parietal
and occipital clusters centroid were at (−10, 17, 46), (5, −47,
47) and (−3, −69, 20) respectively.

2) ERSP Changes With Mental Workload: Fig. 3(A2)
and 3(B2) illustrates frontal and occipital clusters’ ERSP
changes for three workload conditions: low, medium and high
during the tracking task. Statistical analysis on ERSP changes
of the frontal cluster are shown in Fig. 3(A3)). It revealed a
significant increase in theta power from the low to the high
level (p < .05) and a significant increase in theta power at the
frontal cluster during the high workload condition compared to
the medium workload condition. The frontal theta power dur-
ing the medium workload condition was significantly greater
than the low workload condition.

However, no significant spectral power variations were
observed at the parietal cluster. Fig. 3(B2) shows the ERSP
changes at the occipital cluster. Fig. 3(B3) reveals the results
of statistical analysis on the ERSP changes at the occipital
cluster. It was revealed that there was a significant decrease
in alpha power from the low to the high level (p < .05)
and a significant decrease in alpha power at the occipital
cluster during the high workload condition compared to the
medium workload condition. The occipital alpha power during
the medium workload condition was significantly less than the
low workload condition.

Fig. 4(A2), 4(B2) and 4(C2) illustrates the frontal, pari-
etal and occipital clusters’ ERSP changes for three work-
load conditions in the collision prediction task. Statistical
analysis on ERSP changes of the frontal cluster showed a
significant increase in theta power during the high work-
load condition as compared to the low workload condition
(Fig. 4(A3)). The frontal theta power during the high work-
load condition was also significantly greater than that of the
medium workload. Further, there was a significant increase in
the frontal theta power during medium workload compared
to the low workload condition in the collision prediction
task.
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Fig. 3. Scalp map, dipole locations and ERSP changes at the Frontal
and Occipital clusters selected in the tracking task. (A1) spatial scalp map
and dipole source locations of the frontal cluster. (A2) shows the ERSP
changes at the frontal cluster during high, medium and low workload
conditions. (A3) shows the statistically significant difference (p < .05)
between high and low workload conditions, high and medium workload
conditions, and medium and low workload conditions. (B1) spatial scalp
map and dipole source locations of the occipital cluster. (B2) shows the
ERSP changes at the occipital cluster during high, medium, and low
workload conditions. (B3) shows the statistically significant difference
(p < .05) between high and low workload conditions, high and medium
workload conditions and medium and low workload conditions.

The statistical analysis on the ERSP changes at the parietal
cluster (Fig. 4(B3)) revealed a significant increase in the
theta power in high workload as compared to low workload
condition (p < .05) and a significant decrease in the alpha
power (p < .05). There was a significant increase in the theta
power and a significant decrease in the alpha power at the
parietal cluster during the high workload condition compared
to the medium workload condition. In the medium workload
condition, while the parietal theta power was significantly
higher, the parietal alpha power was significantly lower than
the low workload condition. The ERSP changes at the occipital
cluster (Fig. 4(C3)) revealed a significant increase in the delta
and theta power in the high workload as compared to the low
workload condition (p < .05). There was also a significant
increase in the delta and theta power at the occipital cluster
during the high workload condition compared to the medium
workload condition. In the medium workload condition, the
occipital delta and theta power were significantly higher than
in the low workload.

Fig. 4. Scalp map, dipole source locations and ERSP changes at the
Frontal, Parietal and Occipital clusters selected in the collision prediction
task. (A1) spatial scalp map and dipole source locations of the frontal
cluster. (A2) shows the ERSP changes at the frontal cluster during
high, medium, and low workload conditions. (A3) shows the statistically
significant difference (p < .05) between the high and low workload
conditions, high and medium workload conditions, and medium and low
workload conditions. (B1) spatial scalp map and dipole source locations
of the parietal cluster. (B2) shows the ERSP changes at the parietal
cluster during high, medium, and low workload conditions. (B3) shows
the statistically significant difference (p < .05) between high and low
workload conditions, high and medium workload conditions, medium
and low workload conditions. (C1) spatial scalp map and dipole source
locations of the occipital cluster. (C2) shows the ERSP changes at the
occipital cluster during high, medium, and low workload conditions. (C3)
shows the statistically significant difference (p < .05) between the high
and low workload conditions, high and medium workload conditions, and
medium and low workload conditions.

C. Eye Activity Changes With Mental Workload

As shown in Fig. 5(A), pupil size increased with the increas-
ing workload for both tracking and collision prediction tasks.
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Fig. 5. (A) shows the normalized pupil size of all the participants shows a positive trend with the increasing workload. (A1) Normalised pupil size
in the three workload conditions of the tracking task. (A2) Normalised pupil size during low, medium, and high workload conditions for the collision
prediction task. (B) shows the negative trend in the number of blinks with the increasing workload. (B1) Number of blinks during different workload
conditions of the tracking task. (B2) Number of blinks during the collision prediction task decreases with increasing level of workload. (C) shows the
declining trend in the normalized RMSSD of all the participants with the increasing workload. (C1) Normalised RMSSD all the participants in the low,
medium, and high workload conditions of the tracking task. (C2) Normalised RMSSD during collision prediction task for the three levels of workload.

For the tracking task, there was a significant change in the
pupil size for different workload conditions as shown by
repeated-measures ANOVA [F(2, 38) = 13.205, p < .001,
η2

p = .410]. The results of repeated measures ANOVA shows
that in the collision prediction task, there was a significant
change in the pupil size for different workload conditions
[F(2, 46) = 9.276, p < .001, η2

p = .287].
The number of blinks during tracking and collision predic-

tion tasks decreased with the increasing workload, as shown
in Fig. 5(B). Repeated-measure ANOVA was conducted to
study the effect of workload variations on the number of
blinks, which revealed significant variations in the number of
blinks for different workload conditions during the tracking
task [F(2, 46) = 3.624, p = .035, η2

p = .136]. The effect of
workload on the number of blinks in the collision prediction
task was analysed using repeated-measure ANOVA. It showed
a significant variation in the number of blinks [F(2, 46) =
18.586, p < .001, η2

p = .447].

D. Heart Rate Variability (RMSSD) Changes
With Mental Workload

Fig. 5(C) shows the RMSSD variation for different work-
load conditions in the tracking and collision prediction task.
For the tracking task, there was a significant change in the
RMSSD for the different workload conditions, as shown

by the repeated-measures ANOVA [F(2, 34) = 10.171,
p < .001, η2

p = .374]. Results from repeated-measures
ANOVA also shows that in the collision prediction task, there
was a significant change in the RMSSD for different workload
conditions [F(2, 44) = 4.279, p = .022, η2

p = .201].

E. Performance Can Be Predicted From Physiological
Data - Multiple Regression Results

Performance measure in the collision prediction task was
derived using Principal Component Factor Analysis procedure
with the time before collision and collision prediction miss
proportion rate as variables. The eye activity metric for track-
ing and collision prediction tasks were derived using factor
analysis with pupil size and blink rate as variables. The EEG
metric was derived through factor analysis with frontal theta
PSD and occipital alpha PSD as variables for the tracking
task. The EEG metric was derived using factor analysis with
frontal theta, parietal theta and alpha, occipital delta and theta
PSD as variables for collision prediction. Only the factors with
eigenvalue > 1 were included to derive the metrics.

Multiple regression was carried out to investigate whether
EEG, eye activity and HRV metrics of workload could sig-
nificantly predict the performance in the tracking task. The
regression results indicated that the model explained 54.3% of
the variance and that the model was a significant predictor of
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the tracking performance, F(3, 67) = 26.543, p < .001. While
EEG (B = .067, p = .001) and eye activity (B = −.089,
p < .001) contributed significantly to the model, HRV metric
did not (B = −.152, p = .125). The final predictive model
was:

Performance in tracking task

= 0.725 − 0.067 ∗ EEG metric

− 0.089 ∗ Eye related metric − 0.152 ∗ HRV metric (4)

In order to determine whether EEG, eye activity and HRV
metrics could significantly predict the performance in collision
prediction task, we conducted multiple regression analysis.
The regression results indicated that the model explained
61.7% of the variance and that the model was a significant
predictor of the performance in the collision prediction task,
F(3, 68) = 24.324, p < .001. While eye activity (B = −.276,
p = .02) and EEG metrics (B = −.532, p < .001) contributed
significantly to the model, HRV metric did not (B = .444,
p = .443). The final predictive model was:

Performance in Collision Prediction task

= 0.055 − 0.532 ∗ EEG metric − 0.276

∗ Eye related metric + 0.444 ∗ HRV metric (5)

In order to determine whether brain dynamics in the tracking
task can be predicted from the task performance, eye activity
and HRV, multiple regression analysis was employed. The
regression results indicated that the model explained 52.8%
of the variance and that the model was a significant predic-
tor of the brain dynamics, F(3, 67) = 25.013, p < .001.
While performance in the task, evaluated by tracking
accuracy (B = −2.176, p = .001) and eye activity
(B = .314, p = .015) contributed significantly to the model,
HRV metric did not (B = −1.034, p = .067). The final
predictive model was:
Brain dynamics in tracking task

= 1.608 − 2.176 ∗ Performance

+ 0.314 ∗ Eye related metric − 1.034 ∗ HRV metric (6)

Multiple regression analysis was also conducted to deter-
mine whether performance in the collision prediction task
along with the eye activity and HRV metrics could signifi-
cantly predict brain dynamics during the collision prediction
task. The results of the regression indicated that the model
explained 67% of the variance and that the model was a
significant predictor of the brain dynamics during the collision
prediction task, F(3, 68) = 46.064, p < .001. While eye
activity (B = .426, p < .001) and task performance (B =
−.458, p < .001) contributed significantly to the model, HRV
metrics did not (B = −.075, p = .889). The final predictive
model was:
Brain dynamics in Collision Prediction task

= −0.009

− 0.458 ∗ Performance + 0.426 ∗ Eye related metric

− 0.075 ∗ HRV metric (7)

IV. DISCUSSION

In this study, we designed two simple tasks emulating the
elementary ATC tasks: tracking and collision prediction tasks.
Although both these tasks are inspired from the elementary
tasks that ATC operators routinely perform in complex work
environments, we considered them separately to untangle the
differences in the physiological response to workload varia-
tions in these tasks.

In order to study the workload effects of increasing task
load, the mental workload in both these tasks was manipulated
by varying the number of dots. An increase in the mental
workload results in several undesirable cognitive states such
as inattention, mind wandering and effort withdrawal, reducing
situational awareness [46], [47] which ultimately leads to poor
performance and error commission [4], [48], [49]. Despite
several studies [50]–[55] observing significant performance
degradation with increasing workload levels, performance may
not always reliably reflect workload variations as human
operators can achieve the same performance experiencing
different workload [56]. However, for both tasks in our
experiment, the workload manipulation strategy for different
workload levels was determined based on an initial pilot study
conducted on eight participants. Only performance data was
collected in these pilot studies, and the optimal number of dots
for an effective workload manipulation for both tasks were
determined based on performance. Further, the performance
degradation with increasing workload levels in the tracking
task was observed in a previous study [31]. A major limitation
of this classical randomized workload experiment design is
the absence of any self-assessment data, which would have
provided more compelling evidence that the task load manip-
ulations for both tracking and collision prediction tasks could
elicit significant workload variations in the user.

It was observed that the performance in the tracking task,
assessed by the tracking accuracy, degrades significantly with
the increasing workload. Similarly, for the collision detection
task, the time before collision decreased significantly, and col-
lision prediction miss proportion also significantly increased
with increasing levels of workload. Hence, we can confirm that
the workload manipulation (by varying the number of dots)
in both tracking and collision prediction tasks successfully
elicited significant performance variations (H1).

In order to assess the mental workload, EEG, eye activity
and BVP data were recorded while the participants performed
the tasks. The component data was disentangled from the scalp
EEG signal using independent component analysis. Significant
correlations between mental workload and the spectral powers
of frontal, parietal and occipital clusters were successfully
elucidated.

The tracking task demands allocation of attentional
resources to keep track of one, three or five tracking dots
moving randomly among distractor dots. Researchers have
suggested several theories regarding how human users can
successfully track more than one moving target [57]– [64].
Working memory load is sensitive to increased allocation of
attentional resources and is reflected by increases in frontal
theta power [14], [65]. We observed an increase in the frontal
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theta power in the tracking task, which confirms that increased
working memory load was experienced with increasing work-
load levels. Tracking dots moving among distractor dots also
entails working memory mechanisms related to relevant item
maintenance and increases in the memory load. This working
memory mechanism is reflected by a decrease in the alpha
power [21], [66]– [69]. The alpha power is also known to
decrease with increased memory load [70]– [74] and task
difficulty [23], [75]. Our findings also substantiate this working
memory mechanism as the occipital alpha power decreases
with increasing workload levels in the tracking task.

In the collision prediction task, anticipating the trajectory of
dots and predicting whether dots would collide requires atten-
tion and internal concentration. Delta power is an indicator
of attention or internal concentration in mental tasks, and it
has been reported to increase with the increase in workload
[23], [67], [76]. Our results demonstrate an increase in the
delta power at the occipital sites, which validates an increased
allocation of attentional resources with increasing levels of
workload in the collision prediction task. Additionally, keeping
a tab on the trajectory of six, 12 or 18 eight dots adds to the
memory load in the participants. Several studies have shown
that theta power is correlated with memory load [77], [78] and
working memory capacity [64], [79], [80]. In the collision
prediction task, our results reveal a significant increase in
the theta power at the frontal, parietal and occipital clusters,
confirming an increase in memory load with increasing work-
load levels. Furthermore, our results indicate that there is a
decrease in parietal alpha power with increasing levels of
workload. This observed alpha band desynchronisation with
the increasing workload is related to relevant item maintenance
in the working memory [21], [23], [69] and is known to
decrease with increased memory load [70]– [74] and task
difficulty [23], [75]. However, in the collision prediction task,
the most significant decrease in the parietal alpha power was
observed a few seconds before the collision. It might be related
to the increase in the experienced time pressure [81] as the
participants attempt to identify and click on the colliding pair
of dots before the collision.

We also explored eye-related and HRV metrics during work-
load variations. Eye activity data was transformed to pupil size
and blink rate information. Pupil size increased significantly
with the increasing workload in both tracking and collision
prediction tasks as the pupil dilates with increasing workload
[82], [83]. The number of blinks also reduced considerably
with the increasing workload in both tasks. Blink inhibition
occurs in higher workload conditions [84] and so, the blink
rate is inversely correlated with the attentional levels and
workload experienced by the operator [17], [18], [67], [68].
RMSSD was negatively correlated with the mental workload
in both tasks. This decrease in RMSSD with the increasing
workload is widely reported in the literature [86], [87].

Our results show that EEG power spectra at the frontal,
parietal and occipital areas, eye activity and HRV metrics
can reliably and accurately assess the mental workload of
the participants in both tasks. Hence, our second hypothesis
(H2) is proved to be true for both tracking and collision
prediction tasks. Relating to our third hypothesis (H3), the

multiple regression results showed that the performance in the
tracking and collision prediction tasks could be predicted from
the EEG, eye-related and HRV metrics. However, only EEG
and eye activity metrics contribute statistically to performance
prediction in the tracking and collision prediction tasks. For
the tracking task, the participants had a significant visual
load in keeping track of a few dots moving among distractor
dots which was reflected in the eye activity metric being
a higher contributing predictor than the EEG metric. While
for the collision prediction task, EEG metrics was a higher
contributing predictor than eye activity metrics as participants
require significant internal concentration to anticipate the
trajectory of the dots and predict whether the dots would
collide. The results also demonstrate that EEG and eye activity
metrics explain more of the variance of performance in the
collision prediction task than the tracking task. This might
result from performance in the collision prediction task being
derived from the time before collision and collision prediction
miss proportion rate while performance in tracking task was
represented by tracking accuracy alone.

Furthermore, our findings also demonstrate that the brain
dynamics during each of these tasks can be estimated from the
eye activity, HRV and performance during the tasks. However,
only performance and eye activity metrics contribute statisti-
cally to the prediction of brain dynamics in the tracking and
collision prediction tasks. Also, the variance of brain dynamics
was better explained by performance and eye activity metrics
in the collision prediction task than the tracking task. This
might result from performance in the collision prediction task
being derived from the time before collision and collision pre-
diction miss proportion rate while performance in tracking task
was represented by tracking accuracy alone. This estimation of
the brain dynamics from the behaviour data will pave the way
for future systems that can reliably estimate the brain activity
from the behavioural response.

Even though EEG, eye activity and HRV measures were
able to differentiate between low and high levels of workload
sensitively, some of these measures could not accurately
discern the medium workload from low/high workload con-
ditions. There are two possible reasons for this incoherence
reported in the literature: experiment design issue [88] or
inter-individual differences [89]. In our experimental design,
the medium workload condition might have required nearly
comparable cognitive resources and hence, not qualifying for
a significant variation from the low/high workload condition.
However, our results showed a significant drop in the perfor-
mance with increasing workload levels in both the tracking
and collision prediction tasks.

Therefore, it is more plausible to reason that this inco-
herence might be due to the influence of inter-individual
differences. It is well understood that the relationship between
workload and task demand is not straightforward [90]. Speran-
dio [91] claims that the relationship can be better understood
by investigating the strategies employed by human operators
to manage their cognitive resources and workload. Therefore,
the participants might reflect workload variations differently
based on their cognitive resources and the strategies that they
employ for performing the tasks.
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Our results also indicate that even though eye activity and
HRV metrics are sensitive to task load variations, they may
not provide any valuable information on the task that causes
the variations in workload. However, our results demonstrate
that the EEG measures are not just sensitive to the workload
variations but also the task type. The neurometrics correlated
with the variations in the workload of tracking and collision
prediction tasks are different, proving that our fourth hypoth-
esis (H4) is true. Our results provide evidence that the use of
EEG measures in a closed-loop adaptive system can not only
aid the decision of “when” but also “what” form of automation
to deploy to mitigate the workload variations in operators.
Therefore, proper exploitation of the brain dynamics of an
operator might help the adaptive automation to not just step
in at the right time but also be cognitively empathetic with
the operator, helping where it is needed, taking over the task
that is currently overwhelming the operator. Hence, the results
presented here contribute to the development of adaptive
strategies essential for designing intelligent closed-loop mental
workload adaptive systems.

V. CONCLUSION

The performance and efficiency of a system can be
improved by maintaining the operator’s workload in the opti-
mal range. In order to elucidate the impact of task load
variations that comprise the load variations in complex work
environments, we separately designed two tasks emulating
ATC tasks of tracking and collision prediction. EEG spectral
power, eye and HRV correlates to mental workload variations
for tracking and collision prediction tasks are successfully
unravelled. Our results demonstrate that EEG, eye, and HRV
metrics can provide a sensitive and reliable measure to pre-
dict the mental workload and performance of the opera-
tor. Furthermore, multiple regression results demonstrate that
these physiological signals can predict task performance. The
findings also reveal that the brain dynamics during each of
these tasks can be estimated from the eye activity, HRV
and performance during the tasks. The differences in neural
response to increased workload in the tracking and collision
prediction task indicate that these neural measures are sensitive
to variations and type of mental workload. These differences
demonstrate their potential utility in not just deciding “when”
but also “what” to adapt, aiding the development of intelligent
closed-loop mental workload aware systems. This investiga-
tion of physiological indices of workload variation in these
basic tasks has applicability to the design of future adaptive
systems that integrate neurometrics in deciding the form of
automation to mitigate the variations in workload in complex
work environments.
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